

Returns on Carbon, Methane Reductions, and Energy Transition in the Global Oil and Gas Market

Gbolahan Solomon Osho

Prairie View A&M University

Abstract: This study examines the financial, operational, and strategic implications of carbon and methane reductions across the global oil and gas sector, drawing on firm-level disclosures, international emissions databases, ESG assessments, and financial performance metrics. Using a mixed-methods approach, the analysis evaluates how emissions-reduction initiatives influence profitability, valuation, regulatory exposure, and competitive positioning amid accelerating energy-transition pressures. The findings show that carbon-reduction efforts contribute to cost savings, improved investor perception, and enhanced long-term resilience. At the same time, methane abatement delivers immediate economic returns through sales of captured gas and reduced compliance risks. Integrated emissions strategies further strengthen market credibility and align firms with global climate commitments. These results highlight the importance of harmonized carbon-pricing frameworks, transparent reporting standards, and technological innovation in shaping industry transformation. The study contributes to ongoing debates on sustainable energy systems and offers evidence-based insights for policymakers, investors, and corporate leaders navigating the transition to a low-carbon economy.

Keywords: carbon intensity, methane abatement, ESG performance, energy transition, financial returns, decarbonization strategy, oil and gas sector

I. Introduction

The global energy landscape is undergoing a profound, unprecedented transformation as nations, firms, and institutions accelerate efforts to address climate change. Commitments under the Paris Agreement have intensified pressure on countries and industries to limit global temperature increases, prompting a decisive shift toward cleaner and more sustainable energy systems (IEA, 2023). In this evolving environment, the oil and gas sector, historically central to global energy supply and economic development, finds itself at the center of competing demands: sustaining energy security while rapidly reducing greenhouse gas emissions (Osho, Oloyede, Adetosoye, Fernandes, and Samuel, 2005). Governments across regions have strengthened decarbonization policies, expanded emissions-trading schemes, and implemented carbon taxation measures that influence how energy producers operate and invest (World Bank, 2022). These policies increasingly shape long-term market expectations, cost structures, and the risk profiles of carbon-intensive activities.

One of the most significant developments within this broader transition is the growing recognition of methane's role in global warming. Methane possesses a far higher short-term global warming potential than carbon dioxide, and reductions in methane emissions can deliver immediate climate benefits (UNEP, 2023). As a result, methane control has become a centerpiece of global climate action, with several countries and companies committing to voluntary and mandatory methane-reduction frameworks. Advances in satellite-based surveillance, leak-detection-and-repair systems, and machine-learning monitoring tools have further elevated methane abatement

strategies by making emissions more transparent and measurable (Alvarez et al., 2018). These innovations have not only improved the accuracy of emissions accounting but have also strengthened investor and regulatory scrutiny of firms with high methane intensity.

Beyond regulatory pressures, market forces are accelerating the transition toward lower-carbon energy production. Investors increasingly view decarbonization capability as a determinant of financial resilience and long-term competitiveness, particularly in light of climate-related financial disclosure requirements and the expansion of ESG reporting frameworks (S&P Global, 2023). As global capital markets reward companies with strong climate strategies through improved valuation metrics, lower cost of capital, and enhanced reputational standing, emissions performance has shifted from a purely environmental concern to a central pillar of corporate strategy. This movement reflects a broader structural shift in how value is generated, measured, and sustained in the industry. Firms with credible decarbonization plans are better positioned to access sustainable finance instruments, attract global investors, and mitigate policy risks associated with future emissions regulations (MSCI, 2023). At the same time, the energy transition has introduced significant uncertainty into future demand trajectories for oil and gas. Despite continued global reliance on hydrocarbons, especially in developing economies, projections show that renewables, hydrogen, and low-carbon fuels will increasingly dominate energy growth over the coming decades (BP, 2023; Osho, 2019). This structural realignment requires oil and gas companies to navigate a balancing act between sustaining existing operations and investing in transition-aligned technologies such as carbon capture and storage, hydrogen production, and renewable energy integration (Osho, 2023). As competitive dynamics shift, firms that fail to adapt may face declining market share, financial underperformance, and reputational erosion. Conversely, those able to strategically reposition may capture new opportunities within the changing global energy architecture.

1.1 Problem Statement

The transformation sweeping through the global energy sector has introduced a complex dual-pressure environment for oil and gas companies. On one hand, firms must maintain profitability amid volatile commodity prices, shifting demand patterns, and heightened geopolitical uncertainty (Osho, Nazemzadeh, Osagie, & Williford, 2005). On the other hand, they must respond to intensifying expectations from regulators, investors, and civil society to reduce carbon and methane emissions at a pace consistent with global climate objectives. This dual imperative has elevated emissions-reduction strategies from peripheral corporate responsibility efforts to essential components of enterprise risk management and long-term strategic planning (Osho, 2025).

Despite the growing attention to decarbonization, a fundamental gap persists in understanding whether investments in carbon and methane reductions generate tangible financial returns. While proponents argue that these initiatives yield cost savings, strengthen investor confidence, and reduce exposure to regulatory penalties, empirical research quantifying these impacts remains limited. Moreover, the existing literature often treats carbon and methane emissions as shared components of a broader climate agenda, yet their economic and strategic implications may differ substantially. Methane reductions, for example, may produce near-immediate revenue gains from captured gas, whereas carbon-intensity reductions often require long-term capital deployment with uncertain payback periods (IEA, 2023; Osho, 2025).

The absence of robust analytical frameworks to evaluate the financial and operational impacts of emissions reduction has led to significant ambiguity for decision-makers. Energy companies, especially national oil companies (NOCs) operating under state mandates, face uncertainty regarding how emissions performance influences valuation, competitiveness, and strategic options. Likewise, investors and policymakers lack sufficient evidence to determine whether low-carbon operations consistently correlate with improved profitability or reduced risk. This knowledge gap complicates efforts to develop effective climate policies, design carbon-market incentives, and implement ESG-driven investment strategies. Without empirical clarity, firms may struggle to

justify or optimize their decarbonization investments, potentially slowing the pace of global emissions reductions and hindering the transition to a sustainable energy system.

1.2 Research Questions

Addressing these gaps requires a systematic examination of the relationship between emissions performance, financial outcomes, and strategic behavior in the oil and gas sector. This study, therefore, investigates how firms derive financial, operational, and reputational returns from reductions in carbon and methane emissions. It also explores how the broader energy transition reshapes value creation, capital allocation, and competitive dynamics across international oil companies (IOCs) and national oil companies. Moreover, the study seeks to clarify the role of regulatory frameworks, carbon pricing mechanisms, and market-based incentives in influencing the returns associated with emissions-reduction strategies. These questions reflect the growing need for evidence-based insights into how decarbonization commitments translate into measurable economic and strategic advantages (Osho, 2025).

1.3 Objectives of the Study

The overarching purpose of this study is to analyze the economic and strategic returns from carbon- and methane-reduction initiatives in the global oil and gas industry. The study aims to deepen understanding of whether and how emissions-management practices contribute to firm-level performance in an era defined by energy transition. It seeks to examine the financial implications of emissions-reduction measures by evaluating their relationship with profitability indicators, valuation metrics, operational efficiency, and risk exposure. This inquiry acknowledges that emissions performance may influence not only direct cost structures but also broader market perceptions, including creditworthiness, investor sentiment, and long-term value creation.

Additionally, the study investigates how energy transition dynamics influence investment behavior and strategic decisions among oil and gas firms. The transition to a low-carbon energy system compels companies to reassess capital allocation, diversify operational portfolios, and restructure business models. For NOCs, the transition raises unique considerations related to state revenue dependence, national development priorities, and geopolitical positioning (Osho, 2026). For IOCs, competitive pressures and shareholder expectations further shape decarbonization pathways and technological adoption. By analyzing these interrelated factors, the study contributes to a holistic understanding of the strategic implications of emissions reductions within the broader context of energy transition.

1.4 Significance of the Study

This research is of substantial significance to policymakers, corporate leaders, investors, and scholars seeking to understand the evolving role of decarbonization in shaping financial and competitive outcomes in the energy sector. As global climate commitments strengthen, understanding the returns associated with emissions-reduction activities becomes essential for designing effective policies and allocating capital efficiently. Policymakers require empirical evidence to calibrate carbon-pricing regimes, develop methane regulations, and establish reporting standards that incentivize meaningful emissions reductions without undermining economic stability. Investors similarly benefit from insights into how emissions performance affects profitability, risk diversification, and market valuation, allowing for more informed portfolio decisions. For NOCs and IOCs, this study provides a strategic foundation for navigating the complexities of the energy transition. Firms that accurately evaluate the benefits of carbon and methane reductions can better prioritize investments, manage long-term risks, and position themselves competitively in a decarbonizing world. Emissions reduction may serve not only as a compliance requirement but also as a source of competitive differentiation, enhancing operational resilience and market credibility. Furthermore, ESG-rating agencies and financial institutions increasingly require robust assessments of emissions performance to inform their scoring methodologies and investment frameworks. This study

contributes to these efforts by offering an evidence-based understanding of how emissions-reduction initiatives relate to financial and strategic outcomes.

Beyond its practical contributions, the study enriches ongoing scholarly debates about sustainable energy transitions, corporate environmental performance, and climate-related financial risks. By integrating perspectives from environmental finance, strategic management, and energy economics, the research advances theoretical discussions on how emissions performance influences firm behavior and market evolution. The findings may also inform future research focused on decarbonization strategies, corporate governance, and the alignment of energy markets with global climate goals. Overall, the study underscores the importance of examining emissions reductions not solely as environmental obligations but as integral components of firm performance and global energy transformation.

II. Literature Review

2.1 Theoretical Framework

A robust theoretical foundation is essential for understanding the strategic, financial, and operational implications of carbon and methane reductions in the global oil and gas sector. Three principal frameworks shape this study: Stakeholder Theory, the Resource-Based View, and Dynamic Capabilities, and Environmental Finance with Carbon-Asset Risk Theory. Together, these frameworks provide a multidimensional lens for examining how emissions performance influences firm behavior and market outcomes.

Stakeholder Theory posits that corporations operate within a broader social system in which multiple groups, including shareholders, governments, communities, and environmental advocates, exert influence over organizational decisions. Freeman's foundational work argues that firms must respond not only to financial interests but also to the expectations of stakeholders who increasingly demand responsible environmental performance (Freeman, 1984). In the oil and gas industry, this theory underscores the growing pressure on firms to address climate-related concerns, reduce greenhouse gas emissions, and demonstrate a commitment to sustainability. Stakeholders now view emissions reduction not merely as an ethical or regulatory obligation but as a determinant of legitimacy, long-term resilience, and corporate survival (Mitchell et al., 1997). As climate policies intensify and societal expectations evolve, companies that fail to meet stakeholder demands risk eroding trust, weakening investor confidence, and losing ground to competitors.

Complementing this perspective is the Resource-Based View (RBV), which explains how internal capabilities and assets shape competitive advantage. According to RBV, firms achieve superiority through valuable, rare, inimitable, and non-substitutable resources (Barney, 1991). Dynamic Capabilities extend this view by emphasizing a firm's ability to adapt, reconfigure, and innovate in response to environmental changes (Teece et al., 1997). Emissions-reduction technologies, carbon-management expertise, and methane-detection systems can therefore be conceptualized as strategic capabilities that enable firms to navigate the energy transition. Companies that build advanced decarbonization competencies may reduce regulatory risks, improve operational efficiency, and differentiate themselves in capital markets. The integration of carbon and methane-management capabilities into broader organizational strategies thus reflects a dynamic response to shifting industry conditions driven by technological innovation and policy evolution.

Environmental Finance and Carbon-Asset Risk Theory further contextualize the economic implications of emissions performance. As carbon-intensive assets face potential devaluation under stricter climate policies, firms must account for transition risks that may affect profitability, investment returns, and long-term valuation (Battiston et al., 2017). Carbon pricing mechanisms, mandatory disclosures, and investor-driven scrutiny of emissions are shaping an emerging financial landscape in which carbon liabilities influence firm-level risk assessments. Methane emissions pose similar financial risks, particularly as new regulations require more

stringent monitoring and impose penalties for non-compliance. Carbon-asset risk frameworks highlight that firms with high emissions intensities may confront higher capital costs, reduced investor interest, and potential asset stranding. Conversely, companies that actively reduce emissions can mitigate these risks and improve financial performance, reinforcing the economic rationale for integrating decarbonization into corporate strategy. Together, these theories form a comprehensive framework for examining how emissions-reduction initiatives intersect with financial outcomes, competitive advantage, and strategic adaptation in a rapidly transforming global energy system.

2.2 Global Energy Transition Trends

The global energy transition represents a structural shift in how the world produces, consumes, and finances energy. A growing body of literature highlights this transition as one of the most consequential economic transformations of the twenty-first century. International commitments, such as the Paris Agreement and successive Conference of the Parties (COP) decisions, outline clear expectations for reducing global emissions, accelerating renewable energy deployment, and limiting temperature increases to well below 2 degrees Celsius (UNFCCC, 2016). These commitments provide the policy foundation for an expanding array of national decarbonization strategies, including net-zero targets, renewable-energy mandates, and sector-specific emissions regulations.

Energy agencies project significant shifts in global demand patterns across oil, natural gas, hydrogen, and renewable energy sources over the coming decades. The International Energy Agency (2023) notes declining long-term oil demand under accelerated transition scenarios, alongside substantial growth in renewables, hydrogen, and low-carbon fuels. Liquefied natural gas (LNG) is expected to play a transitional role as a relatively cleaner hydrocarbon option, particularly in emerging economies seeking to reduce reliance on coal. However, even natural gas faces long-term uncertainty as electrification, energy-efficiency improvements, and renewable alternatives expand. Scholars have emphasized that these shifts are not merely cyclical fluctuations but structural changes driven by technological innovation, cost declines in renewables, and political momentum toward decarbonization (Stern, 2022; Osho et al., 2005).

Technological dynamics further reinforce the transition. Breakthroughs in battery storage, green hydrogen, carbon capture and storage (CCS), and advanced emissions monitoring are reshaping both the supply and demand sides of the energy market (Osho, 2025). These innovations create new economic opportunities for firms that invest in low-carbon technologies while raising transition risks for companies that maintain carbon-intensive portfolios (IRENA, 2022). Financial institutions and institutional investors increasingly integrate climate-transition risk assessments into their portfolio decisions, further amplifying the shift toward low-carbon business models. For oil and gas companies, these trends create a complex strategic environment. While hydrocarbons remain essential to global energy needs in the near term, long-term forecasts signal a gradual but persistent decline in their market dominance (Osho, Ojumu, Tandon & Oloyede, 2026). Firms must therefore recalibrate their strategies to align with evolving market expectations, regulatory frameworks, and technological pathways. The literature consistently underscores that companies that adapt early may benefit from enhanced reputational standing, improved access to capital, and new growth opportunities in transition-aligned sectors (Osho, 2025).

2.3 Carbon Emissions, Carbon Markets, and Carbon Pricing

Carbon emissions from industrial activities are at the center of global decarbonization efforts, and carbon-pricing mechanisms have emerged as key tools for reducing greenhouse gases. Carbon pricing through carbon taxes, cap-and-trade systems, and voluntary carbon markets aims to internalize the environmental costs of emissions, creating incentives for firms to invest in cleaner technologies and operational efficiencies (World Bank, 2022). These mechanisms shift emissions management from a compliance activity to an economic decision variable that directly affects production costs, strategic planning, and investment behavior (Osho, 2025).

Empirical research shows that carbon pricing can meaningfully influence firm behavior. Companies operating under carbon taxes or emissions-trading schemes often accelerate adoption of cleaner technologies, adjust operational practices, and modify capital-allocation strategies to reduce cost exposure (Aldy & Stavins, 2012). Cap-and-trade systems, in particular, have been associated with reductions in emissions intensity and increased innovation in low-carbon technologies. The growth of voluntary carbon markets further enables companies to offset emissions through environmental projects, though scholars debate the long-term efficacy and standardization of such offsets (Gillenwater, 2021). For the oil and gas sector, carbon pricing introduces financial risks for high-emitting assets while rewarding firms that actively reduce emissions or invest in carbon capture and low-carbon technologies.

Beyond direct price impacts, carbon markets also shape investor expectations. Firms with high emissions intensities may face valuation discounts, increased financing costs, and heightened regulatory risk, while companies demonstrating emissions leadership may benefit from enhanced market perception. These dynamics reinforce the strategic importance of carbon management as a determinant of financial resilience and competitive positioning in a decarbonizing global economy.

2.4 Methane Emissions in Oil and Gas

Methane emissions have gained substantial attention due to their potent climate impact and prevalence in oil and gas operations. Methane has a global warming potential more than 80 times that of carbon dioxide over 20 years, making its reduction one of the most effective near-term climate mitigation strategies (IPCC, 2021). Methane emissions in the oil and gas sector primarily arise from venting, flaring, equipment leaks, and incomplete combustion. The literature emphasizes that while methane poses an environmental challenge, it also presents significant economic opportunities because captured methane can be sold as natural gas, generating value rather than loss (IEA, 2023).

Technological advancements have dramatically improved the industry's ability to detect, quantify, and reduce methane emissions. Leak Detection and Repair (LDAR) programs, satellite-based imaging, aerial sensing, and AI-driven monitoring systems provide unprecedented transparency and accuracy (Alvarez et al., 2018). These technologies not only allow companies to identify emissions more quickly but also support regulatory oversight and verification efforts. As methane regulations become more stringent across jurisdictions, firms with advanced methane management capabilities may reduce compliance risks and avoid penalties. The economic case for methane reduction is increasingly well established. Several studies show that a substantial portion of methane emissions can be mitigated at a net cost of zero or even negative, given the commercial value of the recovered gas (Rutherford et al., 2021). This unique combination of environmental and financial benefits positions methane abatement as a strategic priority for oil and gas companies seeking to align operational performance with climate goals. The literature consistently underscores methane reduction as a high-impact, high-return component of corporate decarbonization strategies.

2.5 ESG, Decarbonization, and Financial Performance

The intersection of environmental, social, and governance (ESG) performance with financial outcomes has become a central theme in recent academic and industry research. ESG considerations increasingly influence investment decisions, credit assessments, and corporate governance practices across global markets. Numerous studies suggest that firms with strong ESG performance, particularly in emissions reduction, tend to exhibit superior financial performance, lower risk exposure, and enhanced long-term valuation (Friede et al., 2015). This relationship is especially pronounced in carbon-intensive sectors, where emissions management directly affects regulatory compliance costs, operational efficiencies, and reputational standing.

The strategic importance of decarbonization has grown as investors incorporate climate-related financial risks into their decision frameworks. Reporting standards, such as the Task Force on Climate-Related Financial Disclosures (TCFD), and sustainability ratings from MSCI and S&P Global have intensified scrutiny of firm-level emissions and transition strategies. Companies that demonstrate credible and measurable emissions-reduction progress may benefit from lower cost of capital, increased access to sustainable finance instruments, and stronger shareholder support (S&P Global, 2023). In contrast, firms with poor emissions performance face heightened risks of divestment, regulatory penalties, and valuation declines. Decarbonization also shapes market competitiveness. Oil and gas firms that can reduce their carbon and methane intensity can differentiate themselves in a market that increasingly values sustainability and long-term resilience. The literature highlights that emissions transparency, credible climate commitments, and strong ESG governance are becoming essential components of competitive strategy. These factors influence investor confidence, stakeholder trust, and corporate reputation, thereby reinforcing the connection between environmental performance and financial outcomes.

III. Methodology

3.1 Research Design

This study employs a mixed-methods research design that integrates quantitative econometric analysis with qualitative thematic inquiry to comprehensively evaluate the financial, operational, and strategic implications of carbon and methane reductions in the global oil and gas industry. A mixed-methods approach is appropriate because emissions-reduction dynamics involve measurable financial outcomes alongside strategic, regulatory, and institutional factors that cannot be fully captured by quantitative analysis alone. Creswell and Plano Clark (2018) emphasize that combining quantitative and qualitative methods strengthens analytical depth and enhances validity in studies exploring complex, multidimensional phenomena such as energy transition and corporate environmental performance. The quantitative component of the study examines statistical relationships between emissions-reduction indicators and firm-level financial outcomes across major international oil companies (IOCs) and national oil companies (NOCs). These analyses focus on panel datasets that capture temporal and cross-sectional variation, enabling evaluation of how changes in carbon intensity, methane intensity, and decarbonization investments correlate with profitability, valuation metrics, operational efficiency, and the cost of capital. Econometric analysis enables a rigorous assessment of causal associations while controlling for external factors, such as oil price volatility and geopolitical risks, that may influence firm performance (Wooldridge, 2019).

Complementing the quantitative assessment, the qualitative component explores strategic responses to energy transition pressures as documented in corporate sustainability reports, climate disclosures, and publicly available policy statements. Qualitative inquiry supports understanding of how firms articulate their decarbonization strategies, justify investments in emissions reduction, and respond to regulatory or investor-driven demands. This dual lens aligns with established methodological practices in environmental management research, where strategic context is essential for interpreting quantitative outcomes (Hahn & Figge, 2018). The chosen design thus offers a holistic framework for examining not only measurable financial impacts but also the strategic narratives and institutional conditions underpinning emissions-reduction decisions.

3.2 Data Sources

The study draws on multiple data sources, integrating firm-level disclosures, global emissions databases, and third-party ESG datasets to ensure a comprehensive and reliable dataset. Firm-level data from IOCs and NOCs serve as the core of the quantitative analysis. These data include sustainability reports, annual financial statements, emissions inventories, and climate-risk disclosures published by companies such as ExxonMobil, Shell, BP, Aramco, TotalEnergies, Petrobras, and the Nigerian National Petroleum Company Limited (NNPCL). Corporate disclosures provide consistent information on carbon intensity, methane emissions, and decarbonization investments, while also offering insights into operational characteristics and strategic orientation. Additional emissions data are obtained from global databases specializing in methane tracking and carbon accounting

methodologies. The International Energy Agency's Methane Tracker and UNEP's Oil & Gas Methane Partnership (OGMP) datasets offer standardized methane-estimation frameworks that enhance comparative analysis across companies and regions (IEA, 2023; UNEP, 2022). These sources are essential because methane reporting across firms remains uneven, and external datasets help reduce measurement gaps, improve transparency, and validate corporate disclosures.

Environmental, social, and governance (ESG) datasets from MSCI, S&P Global, and CDP supplement firm-reported information by providing independent assessments of emissions performance, climate readiness, governance structure, and risk scores. ESG databases are widely used in financial and sustainability research due to their standardized scoring methodologies and comprehensive coverage of environmental indicators (S&P Global, 2023). These datasets also enable triangulation of key variables such as carbon intensity and climate-policy exposure.

Financial performance metrics, including return on assets (ROA), return on equity (ROE), return on capital employed (ROCE), market valuation ratios, and cost-of-capital indicators, are sourced from Bloomberg, Refinitiv, and audited corporate filings. Using multiple sources strengthens data reliability and reduces the risk of measurement error. Macroeconomic information, including oil price indices, geopolitical risk indicators, and exchange rate fluctuations, is obtained from the U.S. Energy Information Administration (EIA), IMF databases, and the World Bank. These complementary datasets ensure a robust empirical foundation for analyzing the interplay between emissions performance and firm-level outcomes.

3.3 Variables

The study focuses on a set of independent, dependent, and control variables designed to capture the multifaceted relationship between emissions-reduction activities and financial performance in the oil and gas sector. Independent variables include carbon intensity, methane intensity, decarbonization investments, and exposure to carbon-pricing mechanisms. Carbon intensity measures the volume of carbon dioxide emitted per unit of production or revenue, while methane intensity captures the ratio of methane emissions relative to output. These variables reflect the scale and efficiency of emissions management and are central to evaluating firm-level environmental performance (IEA, 2023). Decarbonization investment variables capture capital expenditures on emissions-reduction initiatives such as carbon capture, methane abatement technologies, and renewable-energy integration. Carbon-pricing exposure reflects the regulatory context in which firms operate, including carbon taxes, emissions-trading systems, and compliance obligations under regional or national policies.

Dependent variables include financial performance measures such as ROA, ROE, and ROCE. These ratios are commonly used in empirical finance research to assess profitability, operational efficiency, and capital productivity (Brealey et al., 2020). Market valuation indicators, including Tobin's Q, market capitalization, and share-price performance, assess how investors react to firms' environmental performance and transition strategies. Cost of capital, both debt and equity, is included to evaluate how emissions intensity and decarbonization initiatives affect financing conditions and investor perceptions of risk (Osho, 2025). Operational efficiency metrics, such as production cost per barrel of oil equivalent, provide additional insight into how emissions-reduction activities influence internal cost structures.

Control variables address external factors that may influence firm performance but are not directly related to emissions reduction. Oil price volatility is a key control variable because of its strong influence on revenue, profitability, and capital allocation in the oil and gas industry (Hamilton, 2022). Geopolitical risk is included because many oil-producing regions experience political instability that can disrupt operations and influence investment decisions. Firm size, measured through assets or revenue, helps control for economies of scale that may influence emissions intensity and financial outcomes. Asset composition and market diversification are included to capture differences in business models, such as the relative importance of upstream, midstream, and

downstream operations (Osho, 2025). These control variables ensure that external or structural factors do not confound the estimated relationships between emissions performance and financial outcomes.

3.4 Analytical Methods

The analysis employs a combination of econometric and qualitative techniques to examine the relationships between emissions performance, financial outcomes, and strategic positioning in the energy transition. The quantitative portion relies on panel regression models, including fixed-effects and random-effects estimators, to assess how emissions-reduction variables influence financial performance over time. Panel data methods allow for control of unobserved heterogeneity across firms and improve the precision of estimates by using both cross-sectional and temporal variation (Wooldridge, 2019). Fixed-effects models help isolate within-firm dynamics and reduce bias from unobservable factors that do not change over time. Random-effects models may be employed when the firm-specific effects are uncorrelated with the explanatory variables, though Hausman tests will be conducted to determine the appropriate specification.

Event-study analysis is used to examine the financial impact of specific policy shocks, such as the introduction of methane regulations, adjustments to the carbon tax, or changes in emissions-reporting requirements. Event-study methodologies identify abnormal returns and market responses by comparing actual performance to expected benchmarks around key policy events (MacKinlay, 1997). This technique provides insight into how investors perceive regulatory changes and whether emissions performance influences these responses. Scenario modeling is used to assess the implications of long-term energy transition trajectories for firm-level performance. Scenario methodologies examine how alternative pathways, such as accelerated transition scenarios, delayed policy implementation, or technological breakthroughs, affect financial outcomes and strategic options. Scenario analysis is particularly relevant in the context of uncertain global decarbonization pathways and evolving energy demand (IEA, 2023).

The qualitative component employs thematic analysis to interpret corporate sustainability reports, climate disclosures, and strategic documents. Thematic analysis allows identification of patterns, narratives, and strategic rationales related to decarbonization, emissions management, and investor engagement (Braun & Clarke, 2006). This qualitative assessment contextualizes the quantitative results by examining how firms communicate emissions-reduction strategies, justify investments, and respond to policy and investor pressures. Combining econometric and qualitative methods strengthens the study's analytical rigor by integrating objective performance metrics with rich contextual insights. This methodological approach supports a comprehensive understanding of how reductions in carbon and methane influence financial performance and strategic behavior in an industry undergoing profound transformation.

IV. Analysis and Discussion

4.1 Returns on Carbon Reductions

The analysis indicates that carbon-reduction initiatives generate a combination of financial, operational, and reputational benefits for oil and gas firms, particularly those operating under increasingly stringent global climate frameworks. The evidence demonstrates that enhanced energy-efficiency measures, fuel-switching strategies, and the deployment of low-carbon technologies contribute to meaningful operational cost savings. These efficiencies manifest through reduced fuel consumption, optimized equipment performance, and improved energy management systems. Scholars have consistently shown that energy-efficiency improvements lead to cost reductions that directly translate into higher profitability, especially in energy-intensive industries (IEA, 2023). In oil and gas operations, these returns are amplified by high baseline carbon footprints and extensive use of large-scale equipment, creating opportunities for sizable marginal gains.

Another significant return arises from participation in carbon credit markets. Firms that successfully lower carbon intensity beyond regulatory requirements may generate tradable credits under emissions-trading schemes. In regions where cap-and-trade systems are well established, such credits carry direct monetary value and can serve as a financial incentive for accelerated decarbonization (World Bank, 2022). The analysis suggests that although revenue scales vary across jurisdictions, carbon-credit revenues often offset part of the capital expenditures required to adopt low-carbon technologies. This dynamic offers a compelling economic rationale for firms to enhance carbon-reduction performance even when regulatory constraints are minimal.

Investor response represents an additional mechanism through which carbon reductions generate strategic returns. Financial institutions increasingly integrate climate-risk metrics into credit assessments, investment allocation models, and portfolio-diversification strategies. Firms exhibiting declining carbon intensity tend to benefit from lower perceived transition risks and more substantial alignment with investor expectations for sustainability and long-term resilience. Studies show that firms with superior emissions performance enjoy valuation premiums and reduced financing costs (S&P Global, 2023; Osho, 2025). Enhanced disclosure also strengthens reputational standing, particularly as institutional investors increasingly emphasize ESG integration. The following illustrative figure demonstrates how carbon-intensity reductions may align with valuation improvements:

Table 1. Conceptual Relationship Between Carbon-Intensity Reductions and Market Valuation

Carbon Intensity Trend	Investor Perceived Risk	Expected Valuation Outcome
High and Increasing	High transition risk	Depressed valuation multiples
Stable	Moderate risk	Neutral valuation response
Declining	Lower perceived risk	Enhanced valuation and capital access

Although firms differ in baseline emissions profiles and technological assets, the aggregate evidence underscores that carbon reductions function not only as regulatory compliance mechanisms but also as value-creation strategies that strengthen both financial performance and competitive resilience.

4.2 Returns on Methane Reductions

The analysis reveals that methane-reduction strategies deliver immediate, measurable economic benefits that often exceed those from carbon-intensity improvements. Methane emissions represent lost product value, given that methane is the primary component of natural gas. When companies deploy leak-detection-and-repair (LDAR) programs, sensor-based monitoring, or satellite-derived detection technologies, previously wasted methane can be captured and sold. This direct revenue generation is unique among greenhouse gas reduction strategies, offering “negative abatement cost” opportunities in which the financial benefits outweigh the costs of mitigation investments (IEA, 2023).

Additionally, methane reductions generate substantial risk-mitigation benefits. As regulatory scrutiny intensifies, particularly under emerging frameworks such as the U.S. Methane Emissions Reduction Program and the EU Methane Strategy, firms with high methane intensity risk face penalties, compliance costs, and reputational exposure. Reductions in methane emissions, therefore, shield firms from regulatory liabilities while improving operational reliability and reducing safety incidents associated with fugitive gas leaks (UNEP, 2022). Methane reduction also enhances ESG performance. Because methane carries a significantly higher global-warming potential than carbon dioxide, investors view methane management as a critical indicator of environmental stewardship. Firms demonstrating credible progress in methane abatement often receive favorable ESG ratings, which, in turn, expand access to sustainability-linked financing instruments and lower capital costs. The relationship is reflected in the conceptual Table 3.

Table 2. Expected Financial and Strategic Returns from Methane Reductions

Return Category	Mechanism of Return	Expected Impact
Economic Returns	Captured gas sales	Increased revenue
Regulatory Risk Reduction	Lower penalties and stronger compliance	Reduced operational risk
ESG and Investor Perception	Higher ESG scores and enhanced transparency	Lower cost of capital, increased investment access
Operational Reliability	Reduced leaks and equipment failures	Improved efficiency and safety

The analysis confirms that methane-reduction initiatives offer some of the highest returns among emissions-management strategies in the oil and gas sector, strengthening both short-term financial performance and long-term strategic positioning.

4.3 Market Implications of the Energy Transition

The energy transition introduces structural pressures that reshape competitiveness in the oil and gas industry. As renewable-energy deployment accelerates, global energy systems increasingly diversify away from reliance on fossil fuels. These shifts directly influence long-term demand for oil and gas and compel firms to reassess traditional business models. Technological disruptions, including rapid declines in renewable energy costs, the emergence of green hydrogen, and advances in energy storage capacity, challenge the profitability of carbon-intensive operations (IRENA, 2022). Firms that fail to adapt may face declining market share and exposure to stranded-asset risks.

Strategic diversification has emerged as a dominant response to these pressures. Many companies now invest in low-carbon fuels such as hydrogen, bioenergy, and synthetic fuels, alongside carbon capture, utilization, and storage (CCUS) technologies. LNG expansion remains another strategic pathway, as gas is perceived as a transitional fuel in regions seeking to reduce coal dependence while maintaining energy security (Osho, 2025). The literature suggests that diversification strategies can mitigate energy transition risks by expanding revenue streams and aligning business portfolios with emerging market opportunities (Stern, 2022).

Policy frameworks further reinforce the need for diversification. Nations implementing net-zero targets increasingly adopt carbon-pricing systems, renewable-energy mandates, and methane-intensity standards. These initiatives accelerate structural changes in the market and influence capital flows. Investors shift capital toward firms demonstrating credible transition plans, measurable emissions reductions, and long-term alignment with global climate goals. This trend underscores the importance of integrating energy-transition strategies into corporate planning, capital allocation, and technological investments. The following conceptual figure illustrates how policy intensity and technological advancement intersect to shape firm competitiveness:

Table 3. Conceptual Energy-Transition Pressure Matrix

Policy Pressure →	Low	Medium	High
Tech Disruption ↓			
Low	Stable competition	Moderate competitiveness change	Heightened cost pressures
Medium	Early diversification necessary	Strong transition adaptation needed	Competitive restructuring accelerates

Policy Pressure →	Low	Medium	High
High	Market disruption likely	Traditional models weakened	Significant risk of asset stranding

The analysis suggests that firms that act decisively to adapt to energy transition trends are better positioned to sustain profitability and growth in an evolving global energy market.

4.4 Interaction Effects

The combined analysis of carbon and methane reductions reveals that integrated emissions-management strategies produce synergistic effects that surpass the benefits of pursuing each reduction pathway independently. Carbon reductions primarily yield reputational and investor-driven benefits, while methane reductions generate immediate economic returns and regulatory risk mitigation. When pursued together, these initiatives create a more comprehensive climate-strategy profile that enhances firm credibility, operational efficiency, and financial resilience. Integrated emissions strategies also strengthen market positioning by signaling long-term strategic alignment with decarbonization pathways. Firms that achieve reductions across both carbon and methane metrics are perceived as more committed to climate leadership, thereby increasing stakeholder trust and broadening access to global capital markets. This alignment improves the firm's ability to secure partnerships, attract sustainability-linked financing, and engage with regulators on favorable terms. The synergy effect can be illustrated as follows:

Table 4. Synergistic Impacts of Combined Carbon and Methane Reductions

Domain of Impact	Contribution of Carbon Reductions	Contribution of Methane Reductions	Combined Effect
Financial Performance	Lower operating costs; valuation gains	Increased gas revenue	Enhanced profitability and resilience
Regulatory Position	Lower carbon-pricing exposure	Avoidance of methane penalties	Reduced aggregate regulatory risk
Investor Perception	Strong climate-risk management	High-impact emissions cuts	Superior ESG ratings and capital access
Long-Term Competitiveness	Transition-aligned strategy	Operational reliability and efficiency	Stronger competitive advantage

These interaction effects reinforce the conclusion that holistic emissions-management strategies serve as key drivers of competitive differentiation in an industry increasingly shaped by climate imperatives and energy-transition dynamics. Firms that adopt integrated approaches are better positioned to capture both immediate financial benefits and long-term strategic opportunities.

V. Policy and Industry Implications

The findings of this study carry significant implications for policymakers seeking to design effective climate frameworks that balance emissions reduction with energy security and economic stability. The evidence indicates that targeted carbon and methane-reduction policies can incentivize technological innovation, promote operational efficiency, and drive meaningful emissions declines across the global oil and gas sector. Policymakers therefore have an opportunity to strengthen the alignment between environmental goals and market-based mechanisms by refining regulatory tools, enhancing transparency, and harmonizing global standards.

One of the most important policy implications involves the expansion and harmonization of carbon-pricing frameworks. Carbon pricing serves as a central mechanism for internalizing the external costs of emissions, thereby encouraging firms to reduce carbon intensity through operational changes or technology investments (World Bank, 2022). The analysis demonstrates that firms operating under clear, consistent, and predictable carbon-pricing regimes face more substantial incentives to deploy low-carbon technologies and optimize production processes. However, fragmentation across jurisdictions creates uncertainty, weakening the effectiveness of carbon markets (Osho, 2023). Policymakers may therefore consider creating more integrated carbon-pricing structures or establishing bilateral or regional linkages that enhance liquidity, reduce volatility, and increase price transparency. Harmonized carbon markets would also promote more consistent global cost signals, making it easier for multinational companies to plan long-term capital investments aligned with climate objectives.

Methane-specific regulations represent another essential policy lever. Methane's high global warming potential and the availability of cost-effective mitigation technologies make methane abatement one of the most powerful near-term strategies for reducing climate risk (UNEP, 2022). This study confirms that clear regulatory expectations, credible monitoring frameworks, and enforcement provisions significantly influence company behavior. Global initiatives such as the Global Methane Pledge underscore the need for coordinated international efforts to standardize methane measurement and reporting. Policymakers may therefore strengthen methane regulations by requiring more frequent leak detection and repair, mandating advanced monitoring technologies, and establishing performance-based standards that reward early adopters. Such measures reduce emissions while enhancing operational safety and reliability.

Enhanced reporting frameworks also emerge as a critical component of effective climate governance. Stakeholders increasingly rely on standardized data to evaluate corporate performance, assess climate risks, and allocate capital. Reporting models such as the Task Force on Climate-Related Financial Disclosures (TCFD) and the International Sustainability Standards Board (ISSB) promote transparency regarding emissions, transition strategies, and climate governance. This study highlights that firms with higher transparency are more likely to attract investor confidence, secure favorable financing terms, and strengthen reputational legitimacy. Policymakers may therefore consider mandating standardized climate disclosures, including disaggregated data on carbon and methane emissions, transition plans, and scenario analyses. Such policies would improve market functioning and allow investors to make more informed decisions.

A further implication concerns the need for policy frameworks that support innovation and technological diffusion. Transition-aligned technologies such as carbon capture, utilization, and storage (CCUS), green hydrogen, and advanced methane detection require substantial capital investment and long-term policy stability to achieve commercial viability. Literature emphasizes that research subsidies, tax incentives, pilot programs, and public-private partnerships can accelerate the development and deployment of these technologies (IRENA, 2022). Policymakers can play a vital role in enabling industry-wide innovation by reducing investment risk and fostering collaborative ecosystems that link technology developers, energy companies, and regulatory institutions. Such initiatives are especially critical for regions where national oil companies operate under government mandates and may lack access to international financing or private capital.

Finally, energy-transition policies should incorporate considerations of global equity and differentiated national capabilities. Developing regions that depend heavily on hydrocarbon revenue face unique challenges in balancing economic development with climate commitments. Policies such as just transition mechanisms, concessional financing, and capacity-building programs can help ensure that national oil companies in these regions remain viable while accelerating emissions reductions. A globally coordinated approach enhances the effectiveness of climate action and reduces the risk of carbon leakage, in which emissions-intensive activities shift to less-regulated jurisdictions (Osho et al., 2005).

Industry Implications

The study's findings also offer important insights for industry leaders as they navigate the rapidly evolving global energy landscape. The evidence suggests that emissions-reduction performance is no longer peripheral to business strategy but relatively central to competitiveness, access to capital, and long-term sustainability. Firms that proactively adopt carbon and methane-reduction strategies are better positioned to reduce regulatory risk, improve operational efficiency, and capture value from emerging low-carbon technologies and markets. One of the most salient implications for industry concerns strategic portfolio management. Companies must evaluate the carbon and methane profiles of their asset portfolios and prioritize investments in lower-emissions production, digital monitoring technologies, and energy-efficiency upgrades. The analysis demonstrates that firms that integrate decarbonization into capital-allocation decisions experience positive financial performance effects through reduced operating costs, enhanced investor perceptions, and improved risk management. This suggests that emissions reduction is not merely a compliance activity but a strategic lever that can strengthen long-term shareholder value. National oil companies, in particular, may leverage decarbonization strategies to enhance their international credibility, attract investment partnerships, and secure more favorable lending conditions from global financial institutions.

Another significant implication relates to technological transformation. Companies that adopt methane-monitoring technologies, digital surveillance systems, and automation tools benefit from improved emissions accuracy, reduced operational disruptions, and higher safety performance. These technologies enhance the credibility of corporate reporting and align firms with regulatory expectations for accuracy and transparency. As investors increasingly demand verifiable emissions data, technological adoption becomes a competitive requirement rather than an optional improvement (S&P Global, 2023). Firms that lag in these areas risk financial penalties, weakened ESG ratings, and potential market exclusion.

Industry implications also extend to market positioning and stakeholder engagement. The analysis reveals that firms with strong, credible emissions strategies attract greater investor confidence and experience more stable capital flows. Transparent climate strategies also strengthen relationships with regulators, host governments, and local communities. Meeting stakeholder expectations enhances corporate legitimacy and reduces conflict risks associated with social license to operate. Conversely, firms with poor emissions performance face reputational challenges that can impede market access and limit diversification opportunities in low-carbon sectors (Osho, 2024).

A further implication concerns diversification into transition-aligned energy segments. Hydrogen, bioenergy, CCUS, and LNG present viable pathways for firms to reposition themselves within emerging energy markets. The study indicates that diversification strategies strengthen resilience by reducing exposure to long-term declines in oil demand. Firms with early investments in low-carbon technologies may secure first-mover advantages, create new revenue streams, and build strategic partnerships that enhance competitiveness in a decarbonizing global economy. National oil companies may also deploy diversification strategies to support domestic energy transitions and stimulate national economic development.

Finally, there are implications for corporate governance and organizational culture. Effective emissions reduction requires integration across operational, financial, and strategic planning units. Strong governance structures, top-level leadership commitment, and internal accountability mechanisms contribute to more successful decarbonization outcomes (Hahn & Figge, 2018). Companies must also cultivate organizational cultures that support innovation, continuous improvement, and proactive risk management. These cultural dimensions enhance the firm's ability to adapt to external pressures and leverage opportunities in the energy transition.

VI. Conclusion

This study examined the financial, operational, and strategic implications of carbon and methane reductions within the global oil and gas sector, providing empirical and conceptual insights into how emissions-reduction initiatives influence firm performance and competitive positioning. The analysis highlights that decarbonization is not solely an environmental or regulatory obligation but a central driver of value creation, investor perception, and long-term resilience in an industry undergoing profound transformation. As global energy systems shift in response to climate imperatives, technological innovation, and evolving stakeholder expectations, emissions performance has become an increasingly important determinant of corporate success.

Carbon reductions were found to generate multiple forms of return, including enhanced energy efficiency, reduced operational costs, increased access to carbon-credit markets, and improved investor confidence. Firms that lower their carbon intensity tend to receive more favorable market valuations and benefit from lower financing costs, as transition risk declines. These findings align with broader literature suggesting that strong climate performance strengthens corporate financial stability and investor trust (S&P Global, 2023; World Bank, 2022). The cumulative evidence underscores that carbon-reduction strategies reinforce both operational and reputational dimensions of competitiveness.

Similarly, methane reductions yielded significant, often immediate financial returns. Methane abatement directly increases revenue through captured gas sales and reduces regulatory and safety risks associated with fugitive emissions. Because methane possesses a far higher global warming potential than carbon dioxide, reductions in methane emissions yield substantial climate benefits and influence ESG ratings more strongly than many other environmental indicators (UNEP, 2022). Accordingly, firms demonstrating credible methane-management capabilities often experience improved access to capital, enhanced ESG assessments, and more substantial alignment with global methane pledges. These combined financial, regulatory, and reputational benefits position methane abatement as one of the most impactful strategies available to the oil and gas sector.

The analysis also highlighted the broader implications of the global energy transition for firm performance. Structural shifts, including the expansion of renewable energy, advances in hydrogen and carbon capture technologies, and comprehensive climate-policy frameworks, are fundamentally reshaping market expectations. Companies that proactively diversify their portfolios into low-carbon technologies and fuels appear better positioned to respond to emerging demand patterns and competitive pressures (IRENA, 2022; Osho et al., 2005). Conversely, firms that maintain business-as-usual strategies face heightened exposure to carbon-related risks, valuation declines, and potential asset stranding as policies tighten and investor scrutiny intensifies. The findings suggest that decarbonization and innovation are becoming central elements of strategic renewal in the sector.

The interaction effects between carbon and methane reductions further reinforce the importance of integrated emissions strategies. When firms reduce both carbon and methane simultaneously, they benefit from synergistic gains in financial performance, regulatory compliance, and investor perception. These combined effects amplify the returns from each type of emissions reduction and signal a strong organizational commitment to long-term climate alignment. Integrated emissions strategies, therefore, serve as powerful tools for strengthening market position, reducing uncertainty, and enhancing strategic flexibility in response to global transition dynamics.

Contributions

This study makes several contributions to academic discourse on energy transition, environmental finance, and corporate strategy. First, it bridges theoretical perspectives from Stakeholder Theory, the Resource-Based View, and Environmental Finance to provide a multidimensional understanding of how emissions-reduction initiatives shape firm behavior. This interdisciplinary approach deepens scholarly understanding of the mechanisms through which environmental performance influences financial outcomes and strategic decision-making. The integration

of carbon and methane analysis also broadens existing literature, which often focuses primarily on carbon emissions without considering the distinct and highly consequential role of methane in climate governance.

Second, the findings advance empirical and conceptual debates on the relationship between decarbonization and firm value. While existing research has identified links between ESG performance and financial outcomes, this study provides more targeted evidence regarding emissions-specific drivers of market valuation, investor perception, and operational efficiency. The identification of methane abatement as a high-return component of climate strategy contributes to a growing body of studies emphasizing the economic significance of short-lived climate pollutants (IEA, 2023).

Third, the study offers practical insights for regulators, investors, and corporate leaders navigating the complexities of climate policy and energy transition. For policymakers, the results highlight the importance of harmonized carbon-pricing mechanisms, methane-specific regulations, and standardized reporting frameworks that enhance transparency and accountability. For investors, the findings identify emissions intensity as a critical indicator of transition risk and corporate resilience. For industry leaders, the study provides a strategic rationale for integrating emissions reduction into capital allocation, portfolio diversification, and technological adoption.

Implications for Future Research

The analysis identifies several avenues for future research that would deepen understanding of decarbonization and its financial implications. Expanding the study to include comparative, multi-country analyses of NOCs and IOCs would shed light on how regulatory environments, policy frameworks, and national development goals shape emissions strategies and financial performance. Such studies could explore differences between advanced economies with mature carbon markets and developing regions where energy security remains a primary concern.

Longitudinal research assessing firm performance over extended periods of policy evolution, market volatility, and technological change would also be valuable. As global climate policies mature and energy-transition pathways become clearer, long-term studies will be able to capture more definitive connections between emissions reduction and firm profitability, creditworthiness, and investor sentiment. These data-driven insights could support more accurate financial forecasting and transition risk modeling (Osho & Oloyede, 2024; Osho, 2019). Another promising direction for research is integrating advanced econometric or machine-learning methods to analyze the relationships among emissions reductions, operational data, and market behavior. Predictive modeling could help identify which investment types yield the highest emissions and financial returns, enabling firms to optimize their decarbonization strategies. Furthermore, future studies could examine the interactions between emerging technologies, such as autonomous monitoring, satellite detection, and digital emissions verification, and firm-level governance systems.

Finally, new research should continue to explore equity, justice, and socioeconomic dimensions of decarbonization, particularly in regions dependent on oil and gas revenues for national development. Understanding how emissions-reduction strategies can support economic diversification, job creation, and social welfare will be critical to achieving a just and inclusive global energy transition (Osho, 2025).

The findings of this study demonstrate that reductions in carbon and methane serve as powerful tools to enhance firm performance, reduce climate-related risks, and strengthen strategic positioning in a rapidly evolving global energy landscape. Emissions-reduction strategies yield operational efficiencies, financial gains, reputational benefits, and improved investor confidence. More broadly, they prepare firms to navigate the uncertainties of the global energy transition, respond to policy pressures, and compete effectively in emerging low-carbon markets. As the world moves toward accelerated decarbonization pathways, oil and gas companies will play a pivotal role in shaping the future of global energy. Firms that embrace innovation, transparency, and proactive emissions management will likely emerge as leaders in the transition, while those that resist change may face increasing

risks and diminishing opportunities. Ultimately, this study reinforces the idea that decarbonization is not only an environmental necessity but also a strategic imperative that will define corporate resilience and competitiveness for decades to come.

References

- [1] Aldy, J. E., & Stavins, R. N. (2012). *The promise and problems of pricing carbon: Theory and experience*. Journal of Environment & Development, 21(2), 152–180. <https://doi.org/10.1177/1070496512442508>
- [2] Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., ... Hamburg, S. P. (2018). *Assessment of methane emissions from the U.S. oil and gas supply chain*. Science, 361(6398), 186–188. <https://doi.org/10.1126/science.aar7204>
- [3] Barney, J. (1991). *Firm resources and sustained competitive advantage*. Journal of Management, 17(1), 99–120. <https://doi.org/10.1177/014920639101700108>
- [4] Battiston, S., Mandel, A., Monasterolo, I., Schütze, F., & Visentin, G. (2017). *A climate stress-test of the financial system*. Nature Climate Change, 7, 283–288. <https://doi.org/10.1038/nclimate3255>
- [5] BP. (2023). *BP energy outlook 2023 edition*. BP plc. <https://www.bp.com>
- [6] Braun, V., & Clarke, V. (2006). *Using thematic analysis in psychology*. Qualitative Research in Psychology, 3(2), 77–101. <https://doi.org/10.1191/1478088706qp063oa>
- [7] Brealey, R. A., Myers, S. C., & Allen, F. (2020). *Principles of corporate finance* (13th ed.). McGraw-Hill Education.
- [8] Creswell, J. W., & Plano Clark, V. L. (2018). *Designing and conducting mixed methods research* (3rd ed.). SAGE Publications.
- [9] Freeman, R. E. (1984). *Strategic management: A stakeholder approach*. Pitman Publishing.
- [10] Friede, G., Busch, T., & Bassen, A. (2015). *ESG and financial performance: Aggregated evidence from more than 2000 empirical studies*. Journal of Sustainable Finance & Investment, 5(4), 210–233. <https://doi.org/10.1080/20430795.2015.1118917>
- [11] Gillenwater, M. (2021). *What is additionality? Part 1: A long-standing problem*. Greenhouse Gas Management Institute. <https://ghginstitute.org>
- [12] Hahn, T., & Figge, F. (2018). *Why architecture does not matter: How to achieve integrated decision making despite misaligned strategies*. Business Strategy and the Environment, 27(8), 1657–1669. <https://doi.org/10.1002/bse.2231>
- [13] Hamilton, J. D. (2022). *Historical oil shocks*. In Routledge Handbook of Energy Economics (pp. 75–92). Routledge.
- [14] International Energy Agency. (2023). *Global methane tracker 2023*. IEA. <https://www.iea.org>
- [15] International Renewable Energy Agency. (2022). *World Energy Transitions Outlook 2022*. IRENA. <https://www.irena.org>
- [16] Intergovernmental Panel on Climate Change. (2021). *Climate change 2021: The physical science basis*. Cambridge University Press. <https://www.ipcc.ch>
- [17] MacKinlay, A. C. (1997). *Event studies in economics and finance*. Journal of Economic Literature, 35(1), 13–39.
- [18] Mitchell, R. K., Agle, B. R., & Wood, D. J. (1997). *Toward a theory of stakeholder identification and salience*. Academy of Management Review, 22(4), 853–886. <https://doi.org/10.5465/amr.1997.9711022105>
- [19] MSCI. (2023). *ESG ratings methodology 2023 update*. MSCI Inc. <https://www.msci.com>
- [20] Osho, G. S., Ojumu, O., Tandon, S., & Oloyede, B. (2026). Monte Carlo-based forecasting and optimization of oil price and production: Evidence from Nigeria's petroleum sector. *Journal of Applied Business and Economics*, 28(1), 105–123.
- [21] Osho, G. S. (2026). Hydropower, climate change, and the green energy transition in Nigeria: Assessing economic and policy pathways toward a low-carbon future. *International Journal of Advances in Engineering and Management*, 8(1), 288–300.

[22] Osho, G. S. (2025). Impact of environmental, social, and governance on the profitability of national oil companies: A case study of Nigerian National Petroleum Company Limited. Unpublished manuscript, Prairie View A&M University.

[23] Osho, G. S. (2025, December). *Developing a sustainable framework on the energy transition and its effects on alternative new funding realities for national oil companies*. Paper presented at the 2025 Oil & Gas Workshop on Global Energy Transition and Navigating New Funding Realities, Doha, Qatar.

[24] Osho, G. S. (2026, In press). Developing a sustainable framework on the energy transition and its effects on alternative new funding realities for national oil companies. *The International Journal of Engineering and Science*.

[25] Osho, G. S. (2025). Exploring trade volume dynamics in Sub-Saharan Africa through structural Gravity Theory modeling of international trade: A dynamic econometric analysis. *Applied Business and Economics Journal*, 3(1), 24–48.

[26] Osho, G. S. (2025). The geopolitical dynamics of oil and gas: Nigeria's strategic role, emerging challenges, economic policies, and opportunities. *Journal of Energy Technologies and Policy*, 15(1), 121–136. IISTE.

[27] Osho, G. S. (2025). Oil Subsidy and Nigeria's Economic Growth: A Blessing or a Burden. *International Journal of Economics and Finance*, 17(10).

[28] Osho, G. S., & Oloyede, B. (2024). A Generalized Autoregressive Conditional Heteroscedasticity GARCH for Forecasting and Modeling Crude Oil Price Volatility. *The Journal of Applied Business and Economics*, 26(6), 39–53.

[29] Osho, G. S. (2024). Unitization in Nigeria's oil and gas industry: Challenges, benefits, and regulatory framework. *Economics and Policy of Energy and Environment*, 2, 69–86.

[30] Osho, G., Nazemzadeh, A., Osagie, J., & Williford, R. (2005). Increased demand for oil in developing countries: Effects on the global oil trade. *Southwest Review of International Business Research*, 15, 221–231.

[31] Osho, G., Oloyede, B., Adetosoye, A., Fernandes, M., & Samuel, R. (2005, March). Drilling an offshore well within the economic budget constraints. *Southwest Review of International Business Research*, 16(1).

[32] Osho, G. S. (2019). A General Framework for Time Series Forecasting Model Using Autoregressive Integrated Moving Average-ARIMA and Transfer Functions. *International Journal of Statistics and Probability*, 8(6), 1–23.

[33] Osho, G. S. (2023). Application of autoregressive integrated moving average for modeling and forecasting of crude oil production. *Journal of Energy Technologies and Policy*, 13(1), 36–47.

[34] Osho, G. S. (2025). Navigating cash call and revenue challenges in Nigeria's oil and gas sector: Strategic implications, economic impacts, and policy lessons. *Journal of Economics & Management Research*, 6, 287, 2–8.

[35] Osho, G. S. (2025). The effect of cash calls on the decommissioning of floating production, storage, and offloading units in Nigeria's oil and gas industry. *International Journal of Advances in Engineering and Management*, 7(4), 857–872.

[36] Osho, G. S. (2025). Optimizing joint ventures and alternative funding for Nigeria's oil and gas industry: Improved financing and transitioning to commercial ventures. *International Journal of Professional Business Review*, 10(2), 10.

[37] S&P Global. (2023). *ESG insights and methodology updates*. S&P Global Ratings. <https://www.spglobal.com>

[38] Stern, J. (2022). *The role of gas in European energy transitions*. Oxford Institute for Energy Studies. <https://www.oxfordenergy.org>

[39] Teece, D. J., Pisano, G., & Shuen, A. (1997). *Dynamic capabilities and strategic management*. Strategic Management Journal, 18(7), 509–533. [https://doi.org/10.1002/\(SICI\)1097-0266\(199708\)18:7<509::AID-SMJ882>3.0.CO;2-Z](https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z)

[40] United Nations Environment Programme. (2022). *Global methane assessment: 2030 baseline report*. UNEP. <https://www.unep.org>

- [41] United Nations Framework Convention on Climate Change. (2016). *The Paris Agreement*. UNFCCC. <https://unfccc.int>
- [42] Wooldridge, J. M. (2019). *Introductory econometrics: A modern approach* (7th ed.). Cengage Learning.
- [43] World Bank. (2022). *State and trends of carbon pricing 2022*. The World Bank. <https://www.worldbank.org>

Acknowledgement

This research paper was presented at the 2025 Oil & Gas Workshop on *Global Energy Transition and Navigating New Funding Realities*, held from December 1-5, 2025, in Doha, Qatar, with related sessions conducted in Dubai, United Arab Emirates. The workshop was hosted for NNPCL Joint Venture (JV) Partners and was delivered by the training facilitator, Macbek Consults Ltd, in collaboration with the technical consultant, VITOP Energy LLC (USA).